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I. INTRODUCTION

We consider the measurable space (R,B(R)) and two probability measures P and Q on this
space. We further assume the regularity condition that the moments of P and Q are all finite. It is
well-known that there are several equivalent representations of probability measures. Some common
examples include the moment generating function (or Laplace transform) when it exists in an open
interval around zero, the characteristic function (or Fourier transform), the set of moments (where
we essentially “sample” the moment generating function by expanding it using Taylor’s theorem), the
cumulant generating function (logarithm of the moment generating function) or its Taylor coefficients
known as cumulants, the Cauchy transform,[1] and the R-transform or its Taylor coefficients the free
cumulants. Naturally, there are several regularity conditions for each of these descriptions to completely
and uniquely characterize a probability measure. For example, the moments of a distribution completely
characterize a distribution if Carleman’s condition holds; more generally, the “inverse problem” of
determining distributions from moments is known as the moment problem whose variants include the
Hamburger and Stieltjes moments problems. We will be particularly interested in the representation
of probability measures using Jacobi matrices, which are symmetric tridiagonal matrices.

Recall that any probability measure P defines a real Hilbert space of P-square integrable functions
on R, denoted L2 (R,P), equipped with correlation as the inner product:

∀f, g ∈ L2 (R,P) , 〈f, g〉P ,
∫
R
fg dP. (1)

If P is positive definite over the space of polynomials on R (which is easily verified by checking
the positive definiteness of an infinite Hankel matrix of moments using Sylvester’s criterion), then
there is a unique set of orthonormal polynomials up to arbitrary sign changes, which we will denote
{πn : R→ R |n ∈ N = {0, 1, 2, . . . }} where πn is a polynomial with degree n, corresponding to
P that (usually) form a complete orthonormal basis for the Hilbert space. This set of orthonormal
polynomials also serves as a valid representation of P. While orthonormal polynomials can be naïvely
defined using the Gram-Schmidt algorithm, perhaps a more intriguing and fundamental property they
satisfy is the following three-term recurrence relation:

∀n ∈ N, ∀x ∈ R, xπn(x) = bnπn−1(x) + an+1πn(x) + bn+1πn+1(x) (2)

where the sequences {an : n ∈ N, n ≥ 1} and {bn : n ∈ N, n ≥ 1} characterize the recurrence. We
note that the recursion in (2) has the base case n = 0 where we define π−1(x) , 0 and π0(x) = 1
(regardless of P). Moreover, Favard’s theorem asserts that certain sequences {an : n ∈ N, n ≥ 1}
and {bn : n ∈ N, n ≥ 1} define unique families of orthonormal polynomials. So, the sequences of

[1]In signal processing and communications theory, this is known as the Hilbert transform. It is useful in phase retrieval
problems.
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coefficients {an : n ∈ N, n ≥ 1} and {bn : n ∈ N, n ≥ 1} are yet another valid representation of P,
and we construct a tridiagonal matrix using these sequences as follows:

Tn (P) ,


a1 b1 0 · · · 0
b1 a2 b2 · · · 0

0 b2 a3
. . .

...
...

...
. . . . . . bn−1

0 0 · · · bn−1 an

 . (3)

Such matrices are dubbed “Jacobi matrices,” and the infinite Jacobi matrix T∞ (P) (as n→∞) fully
characterizes P.

II. PROPERTIES OF JACOBI MATRICES

Here, we review how to translate between P and its Jacobi matrix T∞ (P).

A. From Jacobi Matrix to Probability Measure

Given Tn (P) for some large n ∈ N, we first compute its spectral decomposition:

Tn (P) = QΛQT (4)

where Q is an orthogonal matrix of eigenvectors (in the columns), and Λ is a diagonal matrix of eigen-
values {λi = Λi,i : 1 ≤ i ≤ n}. Let q (Tn (P)) , QT e1 be the first row of Q, where e1 = [1 0 . . . 0]T

is a standard basis vector. Then, we define the spectral measure of Tn (P) as:

µn (P) ,
n∑
i=1

q (Tn (P))2i δλi
(5)

where δx denotes a Dirac delta measure at x ∈ X . The spectral measure satisfies the following
Gaussian quadrature property for any polynomial τ : R→ R with degree at most 2n− 1:

∀n ∈ N,
∫
R
τ dP =

∫
R
τ dµn (P) =

n∑
i=1

q (Tn (P))2i τ (λi) (6)

where the integrals are abstract Lebesgue integrals. Naturally, we may extend (6) to get µn (P)→ P
weakly (in distribution) as n→∞ using the Portmanteau theorem.

Suppose we now ask for n independent samples of the probability measure P. We may obtain this
sampling from the Jacobi matrix Tn (P) by exploiting the weak convergence of the spectral measure
to P. In particular, we need to “re-sample” the eigenvalues in Λ so that they resemble samples
drawn from the spectral measure in (5). This “re-sampling” can be performed by constructing a
vector where each λi appears

[
nq (Tn (P))2i

]
times, where [·] denotes the rounding operation. We

will refer to this “re-sampling” operation as Resample : Rn × {x ∈ Rn : ‖x‖22 = 1} → Rn, where
Resample

(
[λ1 λ2 . . . λn]T , q (Tn (P))

)
produces the “re-sampled” vector we delineated earlier.

B. From Probability Measure to Jacobi Matrix

Given a probability measure P, it is well-known that the QR decomposition of a certain Krylov
matrix can be used to produce Tn (P). Indeed, we consider the diagonal kernel:

∀x, y ∈ R, d(x, y) = xδ(x− y) (7)

where δ(·) denotes the Dirac delta function. This defines the integral operator:

∀x ∈ R, (Df)(x) ,
∫
R
d(x, y)f(y) dy = xf(x) (8)
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for every function f : R → R. Consider the Krylov space spanned by
{
Dk1 : k ∈ N

}
, which is

the subspace of monomials
{

1, x, x2, . . .
}

, where 1 : R → R is the everywhere unity function. We
perform a Gram-Schmidt orthonormalization of this set of vectors (where the inner product is defined
in (1)) to obtain the orthonormal polynomials {πn : R→ R|n ∈ N}. The Jacobi matrix corresponding
to P is then given by:

∀i, j ≥ 1, [T∞ (P)]i,j =

∫
R
xπi(x)πj(x) dP(x). (9)

To perform these operations numerically, assume we have m independent samples drawn from P
and placed in a vector X = [X1 X2 . . . Xm]T ∈ Rm. We then construct the Krylov matrix:

Km,n =
1√
n


1 X1 X2

1 · · · Xn−1
1

1 X2 X2
2 · · · Xn−1

2

1 X3 X2
3 · · · Xn−1

3
...

...
...

...
1 Xm X2

m · · · Xn−1
m

 (10)

for some large n ∈ N. Taking a QR decomposition of this Krylov matrix: Km,n = QTR, where Q lies
in the Stiefel manifold and R is upper-triangular, we approximately obtain the sampled orthonormal
polynomials:

QT ≈


π0 (X1) π1 (X1) π2 (X1) · · · πn−1 (X1)
π0 (X2) π1 (X2) π2 (X2) · · · πn−1 (X2)
π0 (X3) π1 (X3) π2 (X3) · · · πn−1 (X3)

...
...

...
...

π0 (X1) π1 (Xm) π2 (Xm) · · · πn−1 (Xm)

 . (11)

This is because the QR decomposition effectively performs the Gram-Schmidt algorithm, and the
Euclidean inner product between the jth and kth columns of the Krylov matrix tends to

〈
xj , xk

〉
P:

m∑
i=1

Xj
iX

k
i −→

∫
R
xjxk dP(x) a.s. (12)

as m→∞, by the strong law of large numbers. Finally, we may compute the Jacobi matrix:

Tn (P) = Qdiag(X)QT (13)

which is tridiagonal. Alternatively, we could have used the more numerically stable Lanczos algorithm
(with initial vector n−1/2 [1 1 · · · 1]T ) to calculate this Jacobi matrix. We will refer to this process of
obtaining Tn (P) from X as Lanczos : Rm → Rn×n, where Lanczos(X) = Tn (P).

III. FREE CONVOLUTION

For the two probability measures defined earlier, P and Q, we may define their free convolution as
the inverse R-transform of the sum of their R-transforms. We will use the notation P ?free Q for the
free convolution. In our scenario, it is more pertinent to consider the matrix view of free convolution.
Indeed, if X ∈ Rn and Y ∈ Rn are independent random samples drawn from P and Q respectively,
then the vector of eigenvalues:

Z = eig
(
diag (X) +Qdiag (Y )QT

)
(14)

where Q is an uniform Haar distributed orthogonal matrix, can be construed as a random independent
sampling of the free convolution P ?free Q.
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IV. PERFORMING FREE CONVOLUTIONS USING JACOBI MATRICES

Given the Jacobi matrices Tn (P) and Tn (Q) corresponding to P and Q respectively, we may
construct the Jacobi matrix of the free convolution P ?free Q using the following three-step algorithm:

1) Resample Step. Construct the vectors:

X = Resample (eig (Tn (P)) , q (Tn (P))) ,

Y = Resample (eig (Tn (Q)) , q (Tn (Q))) .

2) Free Sum Step. Then, as shown in (14), compute:

Z = eig
(
diag (X) +Qdiag (Y )QT

)
where Q is uniform Haar distributed.

3) Lanczos Step. Finally, calculate:

Tn (P ?free Q) ≈ Lanczos (Z) .

One obviously needs to rigorously argue that as n → ∞, the final step of the above algorithm
indeed converges (in some sense) to the Jacobi matrix Tn (P ?free Q). However, this algorithm suffices
for simulation purposes.

V. SIMULATIONS FOR THE SEMICIRCLE DISTRIBUTION

We test this algorithm using simulations for the Wigner semicircle distribution. The semicircle pdf
with radius r > 0 is defined as:

f
(r)
X (x) =

{
2
πr2

√
r2 − x2 , −r ≤ x ≤ r
0 , otherwise

(15)

and it has mean and variance:

Ef (r)
X

[X] = 0 , (16)

VARf (r)
X

(X) =
r2

4
. (17)

The orthonormal polynomials with respect to the semicircle distribution are the Chebyshev polynomials
of the second kind, {U (r)

n : [−r, r] → R |n ∈ N}, where U
(r)
n has degree n. They satisfy the

orthogonality relation:

∀n,m ∈ N,
∫ r

−r
U (r)
n (x)U (r)

m (x)f
(r)
X (x) dx = δnm (18)

where δnm denotes a Kronecker delta function, and the three-term recurrence relation:

xU (r)
n (x) =

r

2
U

(r)
n−1(x) +

r

2
U

(r)
n+1(x) + 0U (r)

n (x) (19)

for n ∈ N with the base cases U (r)
−1 (x) , 0 and U

(r)
0 (x) = 1. The sequences of coefficients for this

recursion are an = 0 and bn = r
2 for every n ≥ 1. Hence, the n× n Jacobi matrix corresponding to

the semicircle distribution f (r)X is:

Tn

(
f
(r)
X

)
,


0 r

2 0 · · · 0
r
2 0 r

2 · · · 0

0 r
2 0

. . .
...

...
...

. . . . . . r
2

0 0 · · · r
2 0

 . (20)
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The semicircle distribution has the interesting property that it is closed under free convolutions. For
example, we have:

f
(2)
X ?free f

(2)
X = f

(2
√
2)

X (21)

where we represent the probability measure corresponding to f
(r)
X using f

(r)
X by abusing notation.

Observe that the variances on the left hand side of (21) add to produce the variance on the right
hand side of (21). Therefore, if we apply the algorithm from Section IV to the inputs Tn(f

(2)
X ) and

Tn(f
(2)
X ) for some large value of n ∈ N, we expect to see an output resembling Tn(f

(2
√
2)

X ). The next
subsection presents Julia code for this algorithm and plots illustrating the results.

A. Julia Code and Associated Plots

using PyPlot

function reSample(T,n,k) # inputs = Jacobi matrix, its dimension n,
# and scale factor k, output = iid samples
# from spectral measure

lambda,Q = eig(T)
q = Q[1,:]
samplingRate = round(Int,n*k*(q.*q))
resample = zeros(1,1)
for i = 1:n

if samplingRate[i] > 0
resample = [resample; lambda[i]*ones(samplingRate[i],1)]

end
end
resample = resample[2:end]

end

function freeSum(sample1,sample2,m) # inputs = iid samples from two
# distributions and their length,
# output = iid samples from
# free convolution

Q = qrfact(randn(m,m) + im*randn(m,m))[:Q]
U = full(Q*diagm(sign(randn(m,1) + im*randn(m,1))[:,1])) # Haar
outputSamples = eigvals(diagm(sample1) + U*(diagm(sample2)*U’))

end

function Lanczos(sample,m) # inputs = iid samples from a distribution
# and its length, output = Jacobi matrix

vprev = zeros(m)
v = ones(m)/sqrt(m)
a = zeros(m)
b = zeros(m)
for i = 1:m-1

w = sample.*v
a[i] = (w’ * v)[1]
wproj = w - a[i]*v - b[i]*vprev
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b[i+1] = sqrt(wproj’ * wproj)[1]
vprev = v
v = wproj/b[i+1]

end
a[m] = (v’ * (sample.*v))[1]
outputJacobi = SymTridiagonal(a,b[2:end])

end

function freeConvolveJacobi(T1,T2,n,k) # inputs = Jacobi matrices,
# dimension n, scale factor k,
# output = Jacobi matrix of
# free convolution

sample1 = reSample(T1,n,k)
sample2 = reSample(T2,n,k)
m = length(sample1) # length of both samples must be the same
freeSumSample = freeSum(sample1,sample2,m)
Lanczos(real(freeSumSample),m)

end

n = 100
T = SymTridiagonal(zeros(n),ones(n-1)) # semicircle pdf
freeConvT = freeConvolveJacobi(T,T,n,20) # expect to see zeros

# in diagonal and sqrt(2)
# in upper/lower diagonal

m1,m2 = size(freeConvT)
a = [freeConvT[k,k] for k = 1:m1]
b = [freeConvT[k+1,k] for k = 1:m1-1]

# Histogram of three-term recurrence coefficient a_n
bins = 50 # number of bins
plt[:hist](a,bins,normed="True")
xlabel("Values of a_n")
title("Histogram of Recurence Coefficient a_n

after Free Convolution")

# Histogram of three-term recurrence coefficient b_n
bins = 50 # number of bins
plt[:hist](b,bins,normed="True")
xlabel("Values of b_n")
title("Histogram of Recurence Coefficient b_n

after Free Convolution")

VI. CONCLUSION

In the semicircle distribution simulation, we expect the output Jacobi matrix to have zeros on
the diagonal and

√
2 on the upper and lower diagonals (as one would see in Tn(f

(2
√
2)

X )). Figure
1 suggests that the values on the diagonal (which are values of the sequence {an : n ∈ N}) indeed
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(a) diagonal entries (b) upper (or lower) diagonal entries

Fig. 1: Histograms of the diagonal and upper (or lower) diagonal entries of the output Jacobi matrix
produced by the algorithm.

converge quickly to zero as we would expect. However, the values on the upper or lower diagonal
(which are values of the sequence {bn : n ∈ N}) seem to require much larger values of n or a larger
“scale factor” in the re-sampling phase (see Julia code in Subsection V-A) to converge. One could
also try and improve the convergence of the upper or lower diagonal entries by performing many
independent iterations in the free sum phase, but this would not correspond to a “nice” matrix operation
theoretically. Finally, we remark that all material in this report was based on [Edelman, 2016] and
[Horn and Johnson, 2013].
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